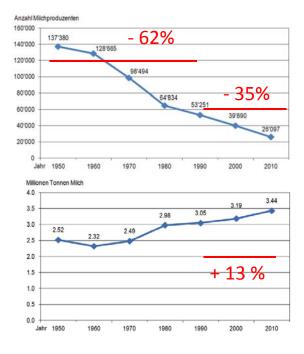


Fütterungspraxis und Futterautonomie von Milchviehbetrieben in der Schweiz

AGFF Frühlingstagung, 31. März 2015, Witzwil Beat Reidy & Simon Ineichen, HAFL Zollikofen

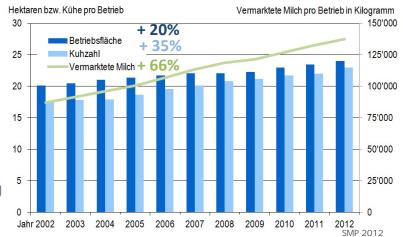

► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Übersicht

- Die Schweizer Milchproduktion im Umbruch
- 2. Fütterungspraxis und Futterautonomie von Milchviehbetrieben
- 3. Effizienzanalyse von Milchproduktionsbetrieben
- 4. Schlussfolgerungen

Die Schweizer Milchproduktion im Umbruch – weniger Betriebe, mehr Milch

- Die Zahl der Milchproduktionsbetriebe nimmt seit Mitte des letzten Jahrhunderts stark ab
- Die Entwicklung verläuft auch in den letzten Jahren 20 Jahren ungebremst
- Produzierte Milchmenge hat zugenommen
- Intensivierung und Spezialisierung der Milchproduktion auch in der Schweiz


▶ Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

SMP 2014

2

Die Schweizer Milchproduktion im Umbruch – grössere und intensivere Betriebe

- Klarer Trend hin zu grösseren, spezialisierten
 Betrieben
 - Steigende
 Milchproduktion und
 Milchleistung
 - Grössere Herden
 - Betriebsfläche steigt nicht im gleichen Mass wie die Tierzahl
 - → Intensivere Fütterung mit höherem Kraftfuttereinsatz

- ► Mittlere Milchleistung seit 1990 von 5'000 auf knapp 7'000 kg erhöht (+36 %)
- Verdoppelung des Kraftfuttereinsatzes ca. 800 kg pro Tier

Studie zur aktuellen Fütterungspraxis in der Schweiz

- Wichtige Fragestellungen
 - Zusammensetzung der Futterrationen, v.a. Rolle des Wiesenfutters
 - Gründe für unterschiedliche Leistung aus dem Wiesenfutter bzw. unterschiedliche Effizienz des Kraftfuttereinsatzes
- Untersuchung auf 157 Milchproduktionsbetrieben in der Schweiz
 - 3 Regionen (West, Zentral, Ost)
 - 3 Höhenstufen (Tal, Hügel, Berg)
 - Silage/Dürrfutter
- ► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

5

Aktuelle Fütterungspraxis in der Schweiz

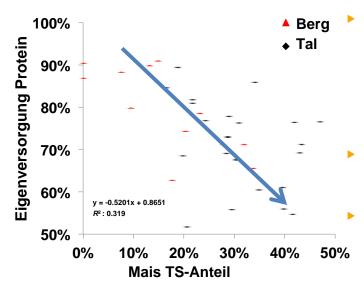
Kategorie	N	Wiesenfutter (% TS)	Kraftfutter (% TS)	Andere (% TS)
Gesamt	157	75.8	11.0	13.2

- Wiesenfutteranteil im Mittel in der Ration bei rund 76%
- Kraftfuttereinsatz entspricht den "offiziellen" Werten
- Grosse Unterschiede zwischen den Betrieben

Aktuelle Fütterungspraxis in der Schweiz

Kategorie	N	Wiesenfutter (% TS)	Kraftfutter (% TS)	Andere (% TS)	
Gesamt	157	75.8	11.0	13.2	
Tal	58	67.6	11.5	20.9	
Hügel	58	78.2	10.5	11.3	
Berg	41	84.1	11.0	4.9	
			_	,	

- Wiesenfutteranteil nimmt mit steigender Höhenstufe zu, Bedeutung anderer Grundfutter (v.a. Mais) nimmt ab
- Kraftfuttereinsatz bleibt relativ konstant
- ▶ Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL


7

Aktuelle Fütterungspraxis in der Schweiz

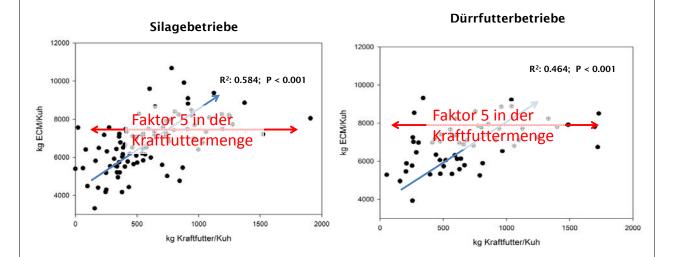
Kategorie	N	Wiesenfutter (%TS)	Kraftfutter (%TS)	Andere (%TS)
Gesamt	157	75.8	11.0	13.2
Tal	58	67.6	11.5	20.9
Hügel	58	78.2	10.5	11.3
Berg	41	84.1	11.0	4.9
Silage	98	71.4	10.5	18.1
Dürrfutter	59	83.1	11.8	5.1

- ▶ Wiesenfutteranteil auf Silobetrieben deutlich tiefer (→Silomais)
- ► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Maisanteil und Protein-Eigenversorgung

Der hohe Energie- bzw. der geringe Proteingehalt von Mais macht in der Regel eine Ergänzung in Form von Proteinausgleichsfutter notwendig

Erhöht die Abhängigkeit der Betriebe von externen Proteinquellen


Oder positiv formuliert: Wiesenfutter erhöht die Futterautonomie

Ineichen et al. 2014

Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

9

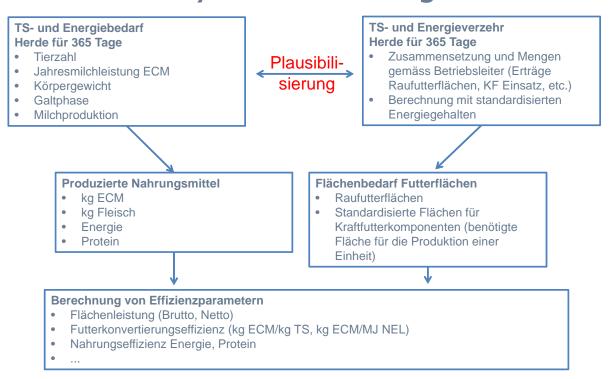
Kraftfuttereinsatz - grosses Optimierungspotenzial

Ineichen und Reidy, 2015

► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

10

Folgerungen


- Futterautonomie ist auf vielen Betrieben rückläufig
 - Höhere Milchleistungen und höherer Kraftfuttereinsatz
 - Steigender Maisanteil führt in der Regel zu einer Erhöhung der Abhängigkeit von betriebsfremdem Protein
 - Kraftfutter wird sehr unterschiedlich effizient eingesetzt, grosses Optimierungspotenzial
- → Sind intensivere Produktionssysteme mit hohen Milchleistungen tatsächlich "effizienter" in Bezug auf die eingesetzten Ressourcen?
- Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

11

Studie: Effizienzanalyse von Milchproduktionsbetrieben

- Vergleich von 4 typischen Milchproduktionssystemen
 - Silobetriebe mit Stallfütterung (TMR)
 - Silobetriebe mit Weide + Mais
 - Grünfütterungsbetriebe (Eingrasen)
 - Saisonale Vollweide
- 22 Praxisbetriebe aus dem Mittelland
- Datenerhebung und Analyse im Rahmen eines Moduls mit Studierenden unter der Leitung von Peter Thomet
- → Mit welchen Ressourcen und wie "ressourceneffizient" wird Milch produziert?

Effizienzanalyse - Berechnungsweise

Eckdaten der Betriebe - Strukturen

► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

	Silo+ Stall (n=7)	Weide + Mais (n=3)	Grünfutter (n=6)	Vollweide (n=6)
Anzahl Kühe (nach TVD)	64	34	64	50
Alter Kühe (T)	1'659	1'688	1'686	1'803
Milchleistung (kg/Kuh/305 T)	9'031 <i>100%</i>	8'514 <i>94%</i>	7'925 88%	5'875 <i>65%</i>
Liefermenge (kg/Jahr)	550'131	219'667	452'667	269'694
LN	41.2	44.1	42.7	28.3
Hauptfutterfläche	28.5	20.1	27.9	26.2
Wiesen- und Weidefläche	21.3	15.9	24.7	25.8
Zwischenkulturen	6.5	5.5	10.2	0.9
Extensive Wiesen & Weiden	2.0	3.5	2.7	2.5
Silomais	7.2 17.5%	4.2 9.5%	3.1 7.3%	0.4 1.4%

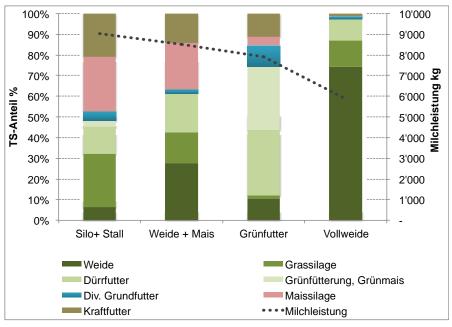
Thomet et al. 2014

► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

14

13

Energiebedarf Herde


	Silo + Stall	Weide + Mais	Grünfutter	Vollweide
Energiebedarf der Herde (GJ NEL)	3'038	1'420	2'699	1'732
Erhaltungsbedarf (GJ NEL)	1'206 <i>(40%)</i>	625 (<i>44%</i>)	1'180 <i>(43%)</i>	772 (44%)
Milchproduktion (GJ NEL)	1'833 <i>(60%)</i>	794 (56%)	1'519 <i>(57%)</i>	959 (56%)
NEL Gehalt der Ration	6.42	6.33	6.22	6.18
Kraftfuttereinsatz (g TS/kg ECM)	162	147	117	10
TS pro Kuh (kg)	1'510	1'139	891	58
davon Proteinträger (kg)	689	183	127	0

Thomet et al. 2014

► Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

15

TS-Verzehr Herde -Rationszusammensetzung

Thomet et al. 2014

Auswirkungen des Produktionssystems auf ausgewählte Effizienzparameter

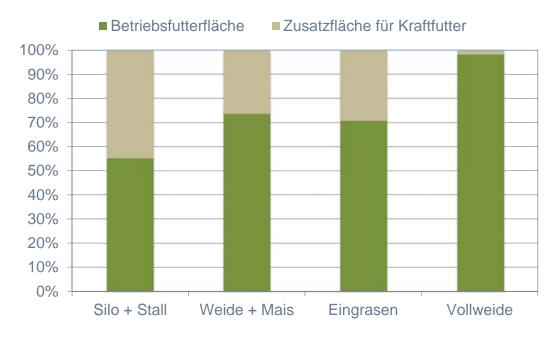
	Silo + Stall	Weide + Mais	Grünfutter	Vollweide
Total produzierte Milchmenge (kg ECM)	583'608	252'995	483'808	308'940
TS Bedarf (kg)	471'928	224'265	433'901	280'044
Energiebedarf der Herde (GJ NEL/Jahr)	3'038	1'420	2'699	1'732
Milchleistung pro Tier (kg ECM/Jahr)	8'860	7'746	7'610	6'104
Futterkonvertierungs- effizienz				
kg ECM / kg TS	1.24	1.13	1.12	1.10
kg ECM / 10 MJ NEL	1.92	1.78	1.79	1.78
MJ in Milch / MJ NEL	0.53	0.49	0.49	0.49
			Thomet et al. 20	114

Thomet et al. 2014

17

Auswirkungen des Produktionssystems auf die Flächenleistung

Silo + Stall Weide + Mais Grünfutter Vollweide


Total produzierte Milchmenge (kg ECM)	583'608	252'995	483'808	308'940
Flächenbedarf (ha)				
Betriebseigene Raufutterfläche	28.5	16.9	28.1	23.7
Zusätzlich benötigte	22.4	6.2	11.4	0.4
Kraftfutterflächen	44%	27%	41%	2%
Gesamte Futterfläche	50.9	23.1	39.5	24.1
Flächenleistung (kg ECM/ha)				
Brutto		4.5000	4-1004	4010 - 4
(ohne betriebsfremde Flächen für Kraftfutter)	20'469	15'000	17'204	13'054
Netto	11'461	401074	401045	421045
(mit betriebsfremden Flächen für Kraftfutter)	11 401	10'974	12'245	12'815
			homest et al. 2014	

Thomet et al. 2014

[►] Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

[►] Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

Futterautonomie der Betriebe

Thomet et al. 2014

▶ Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL

19

Schlussfolgerungen

- Intensivere Produktion bzw. hohe Einzeltierleistungen führen nicht automatisch zu einer besseren Effizienz
 - Nur geringe Unterschiede in der Futterkonvertierungseffizienz und in der Netto-Flächenleistung
 - Zusätzlicher Bedarf an Ackerflächen für die Produktion von Kraftfutter
 - Konkurrenziert die Produktion von Nahrungsmitteln auf zunehmend knapper werdenden Ackerflächen
- Wie lange k\u00f6nnen wir uns dies, vor dem Hintergrund einer rasant wachsenden Weltbev\u00f6lkerung und einer zunehmenden Verknappung der Ressourcen noch leisten?
 - Bedeutung des Wiesenfutters wird insbesondere in typischen Graslandregionen zukünftig noch weiter zunehmen!

